e-mail: journal.ees@usch.md

CLASSIFICATION OF CUBIC DIFFERENTIAL SYSTEMS WITH A MONODROMIC CRITICAL POINT AND MULTIPLE LINE AT INFINITY

SUBA Alexandru,

Doctor habilitattus in physical&mathematical sciences, Professor, Tiraspol State University, Chișinău, Republic of Moldova, e-mail: alexandru.suba@math.md

TURUTA Silvia,

Institute of Mathematics and Computer Science, Chișinău, Republic of Moldova, e-mail: poderioghin_silvia@yahoo.com

Abstract. In this article, we classified the cubic differential systems with a non-degenerate monodromic critical point and multiple line at infinity. We show that there are 5 distinct classes (respectively, 10, 6, 6) of such systems wich have the line at infinity of multiplicity 2 (respectively, 3, 4, 5).

JEL classification: C 02 UDC: 517.2

I. Introduction

We consider differential cubic systems of the form

$$\dot{x} = y + ax^{2} + cxy + fy^{2} + kx^{3} + mx^{2}y + pxy^{2} + ry^{3} \equiv P(x,y),$$

$$\dot{y} = -(x + gx^{2} + dxy + by^{2} + sx^{3} + qx^{2}y + nxy^{2} + ly^{3}) \equiv Q(x,y), \gcd(P,Q) = 1$$
(1)
$$\mathbb{X} = P(x,y) \stackrel{\partial}{=} + Q(x,y) \stackrel{\partial}{=}$$

and the vector fields $X = P(x, y) \frac{\partial}{\partial x} + Q(x, y) \frac{\partial}{\partial y}$ assosiated to systems (1).

For (1) the origin O(0,0) is a non-degenerate critical point of a center or a focus type, i.e. is monodromic.

 $k(x, y) = sx^{4} + (k+q)x^{3}y + (m+n)x^{2}y^{2} + (l+p)xy^{3} + ry^{4}.$ If Denote $k(x, y) \equiv 0$, then the infinity is degenerate for (1), i.e. it consists only from critical points. In this work we suppose that $k(x, y) \neq 0$.

Let $\overline{P}(x, y, Z), \overline{Q}(x, y, Z)$ are the homogenization of the polynomials P(x, y), Q(x, y)respectively, i.e.

$$\bar{P}(x,y,Z) = yZ^{2} + (ax^{2} + cxy + fy^{2})Z + kx^{3} + mx^{2}y + pxy^{2} + ry^{3},$$

$$\bar{Q}(x,y,Z) = -(xZ^{2} + (gx_{\partial}^{2} + dxy + by^{2})Z + sx^{3} + qx^{2}y + nxy^{2} + ly^{3}),$$

and

$$\bar{\mathbb{X}} = \bar{P}(x,y,Z) \frac{\partial}{\partial x} + \bar{Q}(x,y,Z) \frac{\partial}{\partial y}.$$
 Assume that the line at infinity $Z = 0$ is not full of critical

points. We say that Z = 0 has multiplicity m + 1 if m is the greatest positive integer such that Z^m divides $\mathbb{E}(\overline{\mathbb{X}}) = \overline{P} \cdot \overline{\mathbb{X}}(\overline{Q}) + \overline{Q} \cdot \overline{\mathbb{X}}(\overline{P})$. The polynomial $\mathbb{E}(\overline{\mathbb{X}})$ has the form $\mathbb{E}(\overline{\mathbb{X}}) = C_0(x, y) + C_1(x, y)Z_+ \dots + C_8(x, y)Z^8,$

where $C_j(x,y), j = \overline{1,8}$ are polynomials in x and y. If $C_j(x,y) \equiv 0, j = \overline{0,m}$, then m + 2 is the multiplicity of the line at infinity.

II. Cubic systems (1) with the line at infinity of multiplicity two

Theorem 1. The line at infinity Z = 0 has the multiplicity at least two for system (1) if and only if one of the following five sets of conditions holds:

Economic and Engineering Studies

№. 2 (6), 2019

http://jees.u	sch.md/	e-mail: journal.ees@usch.md
	$n = k = m = s = p = q = 0, r \neq 0;$	(2z1)
	k = m = p = r = 0;	(2z2)
	k = m = q = s = 0, l = nr/p;	(2z3)
	k = s = 0, l = qr/m, n = pq/m;	(2z4)

$$l = rs/k, n = ps/k, q = ms/k.$$
(2z5)

 $C_0(x,y) = k(x,y)C_{01}(x,y),$ have We Proof. where $C_{01}(x,y) = (kq - ms)x^4 + 2(kn - ps)x^3y + (3kl + mn - pq - 3rs)x^2y^2 + (3kl + mn - pq - 3rs)x^2 + (3kl + mn - pq - 3kl + mn 2(lm - qr)xy^3 + (lp - nr)y^4$. It is easy to show that the identity $C_{01}(x, y) \equiv 0$ gives us the sets of conditions (2z1)-(2z5).

III. Cubic systems (1) with the line at infinity of multiplicity three

Remark 1. The transformation $x \to y, y \to x, t \to -t$ preserve the form of the system (1) and change the coefficients in the following way: $a \leftrightarrow b, c \leftrightarrow d, ..., r \leftrightarrow s$.

Let $\{\mathcal{F}(a, b, c, d, ..., r, s)\}$ be a set of conditions. Denote $\{\mathcal{F}(a, b, c, d, ..., r, s)\}^{\leftrightarrow} = \{\mathcal{F}(b, a, d, c, ..., s, r)\}$

$$\{\mathcal{F}(a, b, c, a, ..., r, s)\} = \{\mathcal{F}(b, a, a, c, ..., s, r)\}$$

n 2. Modulo the transformations $x \to y, y \to x, t \to -t$, the line at

t, the line at infinity Z = 0**Theorem 2.** Modulo the transformations has the multiplicity at least three for system (1) if and only if one of the following ten sets of conditions holds:

$$a = c = f = k = m = p = r = 0;$$
 (3z1)

$$c = aq/s, f = an/s, k = l = m = p = r = 0;$$
 (3z2)

$$a = 0, c = fq/n, k = l = m = p = r = s = 0;$$
 (3z3)

$$a = f = k = l = m = n = p = r = s = 0, q \neq 0;$$
 (3z4)

$$a = gp/n, c = dp/n, k = 0, l = p, m = q = 0, r = p^2/n, s = 0;$$
 (3z5)

$$b = fq/m, d = cq/m, g = aq/m, k = 0, l = qr/m, n = pq/m, s = 0, q \neq 0;$$
 (3z6)

$$d = \frac{bm^{s} - fm^{2}q + cq^{2}r}{mqr}, g = \frac{aq}{m}, k = 0, l = \frac{qr}{m}, n = m + \frac{q^{2}r}{m^{2}}, p = \frac{m^{s} + q^{s}r}{mq}, s = 0;$$
(3z7)

$$b = fq/m, g = aq/m, k = l = 0, n = m, p = m^2/q, r = s = 0;$$
 (328)

$$b = fs/k, d = cs/k, g = as/k, l = rs/k, n = ps/k, q = ms/k;$$
 (3z9)

$$b = \frac{fk^{2}s + gkrs - ars^{2}}{k^{3}}, \quad d = \frac{s(ck^{3} + gk^{2}p - akps - gkrs + ars^{2})}{k^{4}},$$
$$l = \frac{rs}{k}, \quad m = \frac{k^{4} + kps^{2} - rs^{3}}{k^{2}s}, \quad n = \frac{ps}{k}, \quad q = (k^{4} + kps^{2} - rs^{3})/k^{3}.$$
(3z10)

Proof. In each of the conditions $\{2z1, k(x,y) \neq 0\} - \{2z5, k(x,y) \neq 0\}$ we will solve the identity $C_1(x,y) \equiv 0$.

Conditions (2z1). Under these conditions the polynomial $C_1(x,y)$ has the form $C_1(x,y) = y^5[3l(al - gr)x^2 + 2(cl^2 + alr - dlr - g^{r^2})xy + (f^{l^2} - blr + clr - dr^2)y^2]$. Taking into account that $k(x,y) = -y^3(lx - ry) \neq 0$, the identity $C_1(x,y) \equiv 0$ yield:

$$f = br/l, a = gr/l, c = dr/l;$$
(2)

$$d = g = l = 0. \tag{3}$$

Using transformations $x \to y, y \to x, t \to -t$, we obtain that the conditions $\{2z1, (2)\}$ (respectively, $\{2z1, (3)\}$) are contained in (3z9) (respectively, in (3z2)).

Conditions (2z2). In this case we have $k(x, y) = -x(sx^3 + qx^2y + nxy^2 + ly^3)$ and $C_1(x,y) = -\frac{k(x,y)}{x}[(aq - cs)x^4 + 2(an - fs)x^3y + (3al + cn - fq)x^2y^2 + 2clx y^3 + fly^4].$

The identity $C_1(x,y) \equiv 0$ is realisable if one of the following four sets of conditions holds:

$$a=c=f=0; (4)$$

$$c = aq/s, f = an/s, l = 0;$$
⁽⁵⁾

$$a = 0, c = fq/n, l = s = 0;$$
 (6)

$$a = f = l = n = s = 0, q \neq 0.$$
 (7)

The conditions (4) - (7), together with (2z2), lead us to conditions (3z1)-(3z4), respectively.

Conditions (2z3). The polynomials k(x, y) and $C_1(x, y)$ look as:

$$k(x,y) = y^{2}(py - nx)(px + ry)/p C_{1}(x,y) = -y^{3}(px + ry)C_{11}(x,y)/p^{2}$$

where

 $C_{11}(x,y) = 2np(gp - an)x^{3} - (cn^{2}p + anp^{2} - dnp^{2} - gp^{3} + 3an^{2}r - 3gnpr)x^{2}y - 2r(cn^{2} + anp - dnp - gp^{2})x^{2} + (fn^{2}p^{2} - bp^{3} - fn^{2}r + bnpr - cnpr + dp^{2}r)y^{3}, and C_{11}(x,y) \equiv 0 \Rightarrow$

$$a = gp/n, c = dp/n, r = p^2/n;$$
(8)

e-mail: journal.ees@usch.md

$$b = dr/p, g = n = 0; \tag{9}$$

$$a = gp/n, c = dp/n, f = bp/n.$$
(10)

We have
$$\{(2z3), (8)\} \equiv (3z5) \{(2z3), (9), r = 0\}^{\leftrightarrow} \subset (3z4),$$

 $\{(2z3), (9), r \neq 0\}^{\leftrightarrow} \subset (3z2), \{(2z3), (10), l = 0\}^{\leftrightarrow} \subset (3z6)$ and $\{(2z3), (10), l \neq 0\}^{\leftrightarrow} \subset (3z9)$

Conditions (2z4). In this case we find that

$$k(x,y) = y(my - qx)(mx^2 + pxy + ry^2)/m$$

and

$$C_1(x,y) = (k(x,y) C_{12}(x,y)) / (m^2 (my - qx)),$$

where

 $\begin{aligned} C_{12}(x,y) &= -mq(gm - aq)x^4 - 2pq(gm - aq)x^3y + (dm^3 - gm^2p + bm^{2q} - cm^2q + ampq - dmpq - fmq^2 + cpq^2 - \\ 3gmqr + 3aq^2r)x^2y^2 + 2(bm^3 - fm^2q - gm^2r + amqr - dmqr + cq^2r)xy^3 + (bm^2p - fmpq - dm^2r - bmqr + cmqr + fq^2r)y^4. \end{aligned}$

The identity $C_{13}(x, y) \equiv 0$ gives us the following six sets of conditions: $b = fq/m, d = cq/m, g = aq/m, q \neq 0;$ $d = cq/m + m(bm - fq)/qr, g = aq/m, p = m^2/q + q r/m;$ (11)

$$b = f_a/m, a = aa/m, p = m^2/a, r = 0;$$
(12)

$$d = hn/r g = hm/r g = 0;$$
(13)

$$a = bp/r, g = bm/r, q = 0;$$
(14)

$$b = 0, a = dm/p, a = r = 0;$$
(15)

$$p = 0, g = am/p, q = r = 0;$$
 (15)

$$b = d = p = q = r = 0.$$
 (16)

It is easy to show that $\{(2z4, (j+5)\} \equiv (3zj), j = 6,7,8 \text{ and } \{(2z4), (14)\}^{\leftrightarrow} \subset (3z2), \{(2z4), (15), m = 0\}^{\leftrightarrow} \subset (3z4), \{(2z4), (15), m \neq 0\}^{\leftrightarrow} \subset (3z3), \{(2z4), (16)\}^{\leftrightarrow} \subset (3z3), \{(2z4), (2z4), (2z4),$

Conditions (2z5). Under this conditions the polynomials
$$k(x, y)$$
 and $C_1(x, y)$ look as:
 $k(x, y) = (sx + ky)(kx^3 + mx^2y + pxy^2 + ry^3)/k$, $C_1(x, y) = \frac{k(x, y)}{k(sx + ky)}C_{13}(x, y)$.

where

http://iees.usch.md/	e-mail: i	ournal.ees@usch.md
niip.///////////////////////////////////	U man.	ournal.cos@usch.mu

$$\begin{split} C_{13}(x,y) &= (gk^3 - ak^2s + dk^2s - gkms - cks^2 + ams^2)x^4 + 2(dk^3 + bk^2s - ck^2s - gkps \\ &- fks^2 + aps^2)x^3y + (3bk^3 + dk^2m - gk^2p - 3fk^2s + bkms - ckms + akps - dkps - 3gkrs - fms^2 + cps^2 + 3ars^2)x^2y^2 + 2(bk^2m - gk^2r - fkms + akrs - dkrs + crs^2)xy^3 + (bk^2p - dk^2r - fkps - bkrs + ckrs + frs^2)y^4. \end{split}$$

If $k(x, y) \neq 0$ and $C_{13}(x, y) \equiv 0$, then one of the following two sets of equalities holds:

$$b = fs/k, d = cs/k, g = as/k;$$

$$d = (bk^2 p - fkps - bkrs + ckrs + frk^2)/(k^2 r),$$
(17)

$$g = (bk^3 - fk^2 s + ars^2)/(krs), \ m = (k^4 + kps^2 - rs^3)/(k^2s).$$
(18)

The conditions (17) and (18) together with (2z5) give us the conditions (3z9) and (3z10), respectively.

IV. Cubic systems (1) with the line at infinity of multiplicity four

Theorem 3. Modulo the transformations $x \to y, y \to x, t \to -t$, the line at infinity Z = 0 has the multiplicity at least four for system (1) if and only if one of the following six sets of conditions holds:

$$a = 0, c = b, f = g = k = l = m = n = p = r = s = 0, q \neq 0;$$
 (4z1)

$$a = c = f = k = l = m = n = p = r = s = 0, q \neq 0;$$
 (4z2)

$$b = \frac{aq}{s}, c = \frac{aq}{s}, f = 0, d = \frac{agq + a^2 s + s^2}{as}, k = l = m = n = p = r = 0;$$
(4z3)

$$a = \frac{m^3}{q(bm - fq)}, \quad c = \frac{m^4 + b^2 mq^2 - bfq^3}{q^2 (bm - fq)}, \quad g = \frac{m^2}{bm - fq'}, \quad k = 0, \quad l = \frac{m^2}{q}, \\ d = \frac{m^5 + 2b^2 m^2 q^2 - 3b fm q^3 + f^2 q^4}{m^2 q (bm - fq)}, \quad n = 2m, \quad p = \frac{2m^2}{q}, \quad r = \frac{m^3}{q^2}, \quad s = 0;$$
(4z4)

$$b = fs/k, d = cs/k, g = as/k, l = -k, m = (2k^2 - s^2)/s, r = -k^2/s, B \equiv (\underbrace{k^4 - 23}_{k^2 - 23} \underbrace{k^2 + k^2 + k^2 - 2s^2}_{k^2 - 2s^2})/\underbrace{m^2 - 2k^4 - 2k^2 + 2s^3}_{k^2 - s}, m = -k^2/s, m = -k^2$$

$$c = -\frac{g^{2}k^{3} - 3agk^{3}s + 2a^{2}k^{3}s^{2} + k^{3}s^{2} - agkrs^{3} + k^{2}rs^{3} + a^{2}rs^{3}}{k^{3}s^{2}(gk-as)},$$

$$d = \frac{agk^{4} - a^{2}k^{3}s - k^{3}s^{2} + g^{2}krs^{2} - agrs^{3} - krs^{3}}{k^{3}(gk-as)}, \quad p = \frac{k^{4} + 2rs^{3}}{ks^{2}},$$

$$f = -\frac{k^{4} + g^{2}k^{2}r - 3agkrs + k^{2}rs + 2a^{2}rs^{2}}{k^{2}(gk-as)}, \quad l = \frac{rs}{k}, \quad q = \frac{2k^{4} + rs^{3}}{k^{3}}.$$
(4z6)

e-mail: journal.ees@usch.md

V. Cubic systems (1) with the line at infinity of multiplicity five

Theorem 4. In the class of cubic systems of the form (1) the maximal multiplicity of the line at infinity Z = 0 is 5. Modulo the transformations $x \to y, y \to x, t \to -t$, the line Z = 0 has the multiplicity five for (1) if and only if one of the following six sets of conditions holds:

$$a=0, b=0, c=0, f=0, g=0, k=0, l=0, m=0, n=0, p=0, r=0, s=0, q\neq 0;$$
 (5z1)

$$b=0, \ c=0, \ d=2a, \ f=0, \ k=0, \ l=0, \ m=0, \\ a(k^2 - s^2), \ p=0, \ g(k^2 - s^2), \ r=0, \ s=a^2, \ a \neq 0; \\ a \neq 0; \ 2k^2 - s^2$$
(5z2)

$$b = -\frac{as}{k}, \ c = \frac{a(k^2 - s^2)}{ks}, \ d = \frac{a(k^2 - s^2)}{k^2}, \ f = -a, \ g = \frac{as}{k}, \ m = \frac{2k^2 - s^2}{s}, \ l = -k, \ n = \frac{k^2 - 2s^2}{s}, \ p = \frac{k(k^2 - 2s^2)}{s^2}, \ q = \frac{2k^2 - s^2}{k}, \ r = -\frac{k^2}{s};$$
(523)

$$a=0, \ b=-\frac{gk^2}{s^2}, \ c=-\frac{2gk^2}{s^2}, \ d=0, \ f=\frac{-2gk^3}{s^3}, \ l=\frac{k^3}{s^2}, \\ m=\frac{3k^2}{s}, \ n=\frac{3k^2}{s}, \ p=\frac{3k^3}{s^2}, \ q=3k, \ r=\frac{k^4}{s^3}, \ g^2k^2-k^2s-s^3=0;$$
(5z4)

$$b = -\frac{as}{k}, \ c = -\frac{2as}{k}, \ d = 2a, \ f = -\frac{a(k^2 + 2s^2)}{s^2}, \ g = \frac{k^2 + a^2s}{ak}, \ l = \frac{k^3}{s^2}, m = \frac{3k^2}{s}, \ n = \frac{3k^2}{s}, \ p = \frac{3k^3}{s^2}, \ q = 3k, \ r = \frac{k^4}{s^3}, \ k^4 - a^2 k^2 s - a^2 s^3 = 0; b = -\frac{k(-agk + k^2 + a^2 s + s^2)}{s(gk - as)}, \ c = -\frac{2k(gk - 2as)}{s^2}, \ d = 2a, f = -\frac{k^2(2gk - 3as)}{s^3}, \ l = \frac{k^3}{s^2}, \ m = \frac{3k^2}{s}, \ n = \frac{3k^2}{s}, \ p = \frac{3k^3}{s^2}, q = 3k, \ r = \frac{k^4}{s^3}, \ g^2 k^2 - 2agks - k^2 s + a^2 s^2 - s^3 = 0.$$
(5z6)

Theorems 3 and 4 from Sections IV and V can be proved similarly as Theorem 2.

Received: 11.12.2019 **Reviewed:** 27.12.2019 **Accepted to publishing:** 30.12.2019